A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry.
نویسندگان
چکیده
UNLABELLED The specificity of antibodies have made immunoconjugates promising vectors for the delivery of radioisotopes to cancer cells; however, their long pharmacologic half-lives necessitate the use of radioisotopes with long physical half-lives, a combination that leads to high radiation doses to patients. Therefore, the development of targeting modalities that harness the advantages of antibodies without their pharmacokinetic limitations is desirable. To this end, we report the development of a methodology for pretargeted PET imaging based on the bioorthogonal Diels-Alder click reaction between tetrazine and transcyclooctene. METHODS A proof-of-concept system based on the A33 antibody, SW1222 colorectal cancer cells, and (64)Cu was used. The huA33 antibody was covalently modified with transcyclooctene, and a NOTA-modified tetrazine was synthesized and radiolabeled with (64)Cu. Pretargeted in vivo biodistribution and PET imaging experiments were performed with athymic nude mice bearing A33 antigen-expressing, SW1222 colorectal cancer xenografts. RESULTS The huA33 antibody was modified with transcyclooctene to produce a conjugate with high immunoreactivity, and the (64)Cu-NOTA-labeled tetrazine ligand was synthesized with greater than 99% purity and a specific activity of 9-10 MBq/μg. For in vivo experiments, mice bearing SW1222 xenografts were injected with transcyclooctene-modified A33; after allowing 24 h for accumulation of the antibody in the tumor, the mice were injected with (64)Cu-NOTA-labeled tetrazine for PET imaging and biodistribution experiments. At 12 h after injection, the retention of uptake in the tumor (4.1 ± 0.3 percent injected dose per gram), coupled with the fecal excretion of excess radioligand, produced images with high tumor-to-background ratios. PET imaging and biodistribution experiments performed using A33 directly labeled with either (64)Cu or (89)Zr revealed that although absolute tumor uptake was higher with the directly radiolabeled antibodies, the pretargeted system yielded comparable images and tumor-to-muscle ratios at 12 and 24 h after injection. Further, dosimetry calculations revealed that the (64)Cu pretargeting system resulted in only a fraction of the absorbed background dose of A33 directly labeled with (89)Zr (0.0124 mSv/MBq vs. 0.4162 mSv/MBq, respectively). CONCLUSION The high quality of the images produced by this pretargeting approach, combined with the ability of the methodology to dramatically reduce nontarget radiation doses to patients, marks this system as a strong candidate for clinical translation.
منابع مشابه
18F-Based Pretargeted PET Imaging Based on Bioorthogonal Diels–Alder Click Chemistry
A first-of-its-kind (18)F pretargeted PET imaging approach based on the bioorthogonal inverse electron demand Diels-Alder (IEDDA) reaction between tetrazine (Tz) and trans-cyclooctene (TCO) is presented. As proof-of-principle, a TCO-bearing immunoconjugate of the anti-CA19.9 antibody 5B1 and an Al[(18)F]NOTA-labeled tetrazine radioligand were harnessed for the visualization of CA19.9-expressing...
متن کاملMicro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels–Alder reactions. Potential applications for pretargeted in vivo PET imaging† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02933g Click here for additional data file.
Pretargeted PET imaging has emerged as an effective two-step in vivo approach that combines the superior affinity and selectivity of antibodies with the rapid pharmacokinetics and favorable dosimetry of smaller molecules radiolabeled with short-lived radionuclides. This approach can be based on the bioorthogonal inverse-electron-demand Diels–Alder (IEDDA) reaction between tetrazines and trans-c...
متن کاملA New Highly Reactive and Low Lipophilicity Fluorine-18 Labeled Tetrazine Derivative for Pretargeted PET Imaging.
A new (18)F-labeled tetrazine derivative was developed aiming at optimal radiochemistry, fast reaction kinetics in inverse electron-demand Diels-Alder cycloaddition (IEDDA), and favorable pharmacokinetics for in vivo bioorthogonal chemistry. The radiolabeling of the tetrazine was achieved in high yield, purity, and specific activity under mild reaction conditions via conjugation with 5-[(18)F]f...
متن کاملPretargeted PET Imaging of trans-Cyclooctene-Modified Porous Silicon Nanoparticles
Pretargeted positron emission tomography (PET) imaging based on bioorthogonal chemical reactions has proven its potential in immunoimaging. It may also have great potential in nanotheranostic applications. Here, we report the first successful pretargeted PET imaging of trans-cyclooctene-modified mesoporous silicon nanoparticles, using 18F-labeled tetrazine as a tracer. The inverse electron-dema...
متن کاملThe growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals.
Click chemistry has become a ubiquitous chemical tool with applications in nearly all areas of modern chemistry, including drug discovery, bioconjugation, and nanoscience. Radiochemistry is no exception, as the canonical Cu(I)-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, inverse electron demand Diels-Alder reaction, and other types of bioorthogonal click lig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 54 8 شماره
صفحات -
تاریخ انتشار 2013